Pink1 and Parkin regulate Drosophila intestinal stem cell proliferation during stress and aging
نویسندگان
چکیده
Intestinal stem cells (ISCs) maintain the midgut epithelium in Drosophila melanogaster Proper cellular turnover and tissue function rely on tightly regulated rates of ISC division and appropriate differentiation of daughter cells. However, aging and epithelial injury cause elevated ISC proliferation and decreased capacity for terminal differentiation of daughter enteroblasts (EBs). The mechanisms causing functional decline of stem cells with age remain elusive; however, recent findings suggest that stem cell metabolism plays an important role in the regulation of stem cell activity. Here, we investigate how alterations in mitochondrial homeostasis modulate stem cell behavior in vivo via RNA interference-mediated knockdown of factors involved in mitochondrial dynamics. ISC/EB-specific knockdown of the mitophagy-related genes Pink1 or Parkin suppresses the age-related loss of tissue homeostasis, despite dramatic changes in mitochondrial ultrastructure and mitochondrial damage in ISCs/EBs. Maintenance of tissue homeostasis upon reduction of Pink1 or Parkin appears to result from reduction of age- and stress-induced ISC proliferation, in part, through induction of ISC senescence. Our results indicate an uncoupling of cellular, tissue, and organismal aging through inhibition of ISC proliferation and provide insight into strategies used by stem cells to maintain tissue homeostasis despite severe damage to organelles.
منابع مشابه
Mitochondria deliver a gut check to intestinal stem cells
Adult tissues are maintained by the carefully coordinated activity of stem cells. In the midgut of adult fruit flies, for instance, intestinal stem cells (ISCs) asymmetrically divide to yield both a new stem cell and an enteroblast capable of differentiating into the intestine’s other main cell types. ISCs can undergo a burst of proliferation to repair the intestinal epithelium if it is damaged...
متن کاملPink1, Parkin, DJ-1 and mitochondrial dysfunction in Parkinson's disease.
Mutations in PARKIN, PTEN-induced kinase 1 (PINK1) and DJ-1 are found in autosomal recessive forms and some sporadic cases of Parkinson's disease. Recent work on these genes underscores the central importance of mitochondrial dysfunction and oxidative stress in Parkinson's disease. In particular, pink1 and parkin loss-of-function mutants in Drosophila show similar phenotypes, and pink1 acts ups...
متن کاملRapamycin preserves gut homeostasis during Drosophila aging
Gut homeostasis plays an important role in maintaining the overall body health during aging. Rapamycin, a specific inhibitor of mTOR, exerts prolongevity effects in evolutionarily diverse species. However, its impact on the intestinal homeostasis remains poorly understood. Here, we demonstrate that rapamycin can slow down the proliferation rate of intestinal stem cells (ISCs) in the aging guts ...
متن کاملPink1 Rescues Gal4-Induced Developmental Defects in the Drosophila Eye
Parkinson disease pathology often includes the presence of ubiquitin-positive, α-synuclein-enriched inclusions in the remaining neurons. Pink1 (also identified as PARK6) encodes a serinethreonine kinase involved in mitochondrial protection that works with parkin to ubiquitinate various proteins, promoting mitophagy. The parkin protein works to tag cystolic proteins for degradation, and previous...
متن کاملAconitase Causes Iron Toxicity in Drosophila pink1 Mutants
The PTEN-induced kinase 1 (PINK1) is a mitochondrial kinase, and pink1 mutations cause early onset Parkinson's disease (PD) in humans. Loss of pink1 in Drosophila leads to defects in mitochondrial function, and genetic data suggest that another PD-related gene product, Parkin, acts with pink1 to regulate the clearance of dysfunctional mitochondria (mitophagy). Consequently, pink1 mutants show a...
متن کامل